Квантовая механика помогла придумать оптическую память невообразимой плотности - «Новости сети» » Новости мира Интернет
Вышел Wine 11 — запуск Windows-приложений и игр в Linux и macOS стал почти «родным» - «Новости сети»
Вышел Wine 11 — запуск Windows-приложений и игр в Linux и macOS стал почти «родным» - «Новости сети»
Глава Google DeepMind считает, что китайские разработчики ИИ-моделей отстают от американских лишь на несколько месяцев - «Новости сети»
Глава Google DeepMind считает, что китайские разработчики ИИ-моделей отстают от американских лишь на несколько месяцев - «Новости сети»
Две игры в одной: Capcom показала геймплей Resident Evil Requiem за Грейс и Леона - «Новости сети»
Две игры в одной: Capcom показала геймплей Resident Evil Requiem за Грейс и Леона - «Новости сети»
Nvidia настаивает, что сокращений в номенклатуре GeForce RTX 50 нет, но есть проблемы с поставками - «Новости сети»
Nvidia настаивает, что сокращений в номенклатуре GeForce RTX 50 нет, но есть проблемы с поставками - «Новости сети»
США вслед за Россией и Китаем пообещали построить атомную электростанцию на Луне - «Новости сети»
США вслед за Россией и Китаем пообещали построить атомную электростанцию на Луне - «Новости сети»
Apple выбрала Gemini в качестве основы для новой Siri - «Новости мира Интернет»
Apple выбрала Gemini в качестве основы для новой Siri - «Новости мира Интернет»
Apple представила платформу Creator Studio с коллекцией приложений для творчества - «Новости мира Интернет»
Apple представила платформу Creator Studio с коллекцией приложений для творчества - «Новости мира Интернет»
Google научила Veo создавать вертикальные видео в 4K для мобильных платформ - «Новости мира Интернет»
Google научила Veo создавать вертикальные видео в 4K для мобильных платформ - «Новости мира Интернет»
NVIDIA добавила поддержку DLSS 4.5 Super Resolution во все видеокарты GeForce RTX - «Новости мира Интернет»
NVIDIA добавила поддержку DLSS 4.5 Super Resolution во все видеокарты GeForce RTX - «Новости мира Интернет»
Spigen выпустила ретро-чехол для iPhone 17 Pro в стиле классического Macintosh - «Новости мира Интернет»
Spigen выпустила ретро-чехол для iPhone 17 Pro в стиле классического Macintosh - «Новости мира Интернет»
Новости мира Интернет » Новости » Новости мира Интернет » Квантовая механика помогла придумать оптическую память невообразимой плотности - «Новости сети»

Группа учёных из США смогла соединить квантово-механическую теорию и цифровую запись, проложив путь к потенциально сверхплотной оптической памяти. Запись осуществляется излучателями атомарного размера, встроенными в саму память, а ячейками для хранения информации выступают множественные дефекты в атомарной структуре памяти. Всё это замешано на управляемом изменении квантовых состояний дефектов, явив собой смесь классической и квантовой физики.



Квантовая механика помогла придумать оптическую память невообразимой плотности - «Новости сети»


Источник изображения: Giulia Galli



Исследование и разработку моделей изучаемых явлений осуществили физики из Аргоннской национальной лаборатории министерства энергетики США и Притцкеровской школы молекулярной инженерии Чикагского университета. Сначала они провели моделирование и предсказали возможные результаты и лишь потом провели эксперименты. Проделанная учёными работа во многом новаторская. Ещё никто не изучал вопрос, как поведут себя дефекты в атомарной структуре твёрдых материалов, если по соседству с ними в нанометровой доступности расположатся излучатели энергии (фотонов). Фактически это физика в ближнем поле, которая непросто поддаётся изучению и, прежде всего, из-за возникновения разного рода квантовых эффектов.


«Мы разработали фундаментальные физические основы того, как передача энергии между дефектами может лежать в основе невероятно эффективного оптического метода хранения, — сказала Джулия Галли (Giulia Galli), профессор Чикагского университета и старший научный сотрудник Аргоннской национальной лаборатории. — Это исследование иллюстрирует важность изучения основных принципов и квантовомеханических теорий для освещения новых, зарождающихся технологий».


Если мы будет рассматривать, например, оптические диски, то минимально допустимое пятно для записи будет ограничено дифракционным пределом оптической системы и не сможет быть меньше длины волны записывающего лазера. Учёные предложили насытить материал атомами редкоземельных элементов, которые отличаются тем, что способны переизлучать падающий на них свет в более узком диапазоне и на других длинах волн. Тем самым можно создать материал с мириадами записывающих «лазеров» внутри, каждый из которых был бы размером с атом.


Точно также материал можно насытить ячейками для записи, в роли которых выступали бы дефекты в кристаллической структуре. При достаточном количестве атомов редкоземельных элементов и дефектов большинство из них находились бы в нанометровой доступности друг от друга. Суть открытия в том, что редкоземельные излучатели (точнее — переизлучатели) необратимо или на очень длительное время меняют квантовые состояния находящихся по соседству дефектов (переводят их из синглетного в триплетное состояние). А это память, работающая в оптическим диапазоне. И очень плотная память — на уровне атомарной структуры.


Учёные предупреждают, что они пока слабо представляют многие механизмы работы такой памяти, но не сомневаются, что это интересный и перспективный путь для удовлетворения нужд человечества в сохранении цифровых архивов.

Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Группа учёных из США смогла соединить квантово-механическую теорию и цифровую запись, проложив путь к потенциально сверхплотной оптической памяти. Запись осуществляется излучателями атомарного размера, встроенными в саму память, а ячейками для хранения информации выступают множественные дефекты в атомарной структуре памяти. Всё это замешано на управляемом изменении квантовых состояний дефектов, явив собой смесь классической и квантовой физики. Источник изображения: Giulia Galli Исследование и разработку моделей изучаемых явлений осуществили физики из Аргоннской национальной лаборатории министерства энергетики США и Притцкеровской школы молекулярной инженерии Чикагского университета. Сначала они провели моделирование и предсказали возможные результаты и лишь потом провели эксперименты. Проделанная учёными работа во многом новаторская. Ещё никто не изучал вопрос, как поведут себя дефекты в атомарной структуре твёрдых материалов, если по соседству с ними в нанометровой доступности расположатся излучатели энергии (фотонов). Фактически это физика в ближнем поле, которая непросто поддаётся изучению и, прежде всего, из-за возникновения разного рода квантовых эффектов. «Мы разработали фундаментальные физические основы того, как передача энергии между дефектами может лежать в основе невероятно эффективного оптического метода хранения, — сказала Джулия Галли (Giulia Galli), профессор Чикагского университета и старший научный сотрудник Аргоннской национальной лаборатории. — Это исследование иллюстрирует важность изучения основных принципов и квантовомеханических теорий для освещения новых, зарождающихся технологий». Если мы будет рассматривать, например, оптические диски, то минимально допустимое пятно для записи будет ограничено дифракционным пределом оптической системы и не сможет быть меньше длины волны записывающего лазера. Учёные предложили насытить материал атомами редкоземельных элементов, которые отличаются тем, что способны переизлучать падающий на них свет в более узком диапазоне и на других длинах волн. Тем самым можно создать материал с мириадами записывающих «лазеров» внутри, каждый из которых был бы размером с атом. Точно также материал можно насытить ячейками для записи, в роли которых выступали бы дефекты в кристаллической структуре. При достаточном количестве атомов редкоземельных элементов и дефектов большинство из них находились бы в нанометровой доступности друг от друга. Суть открытия в том, что редкоземельные излучатели (точнее — переизлучатели) необратимо или на очень длительное время меняют квантовые состояния находящихся по соседству дефектов (переводят их из синглетного в триплетное состояние). А это память, работающая в оптическим диапазоне. И очень плотная память — на уровне атомарной структуры. Учёные предупреждают, что они пока слабо представляют многие механизмы работы такой памяти, но не сомневаются, что это интересный и перспективный путь для удовлетворения нужд человечества в сохранении цифровых архивов.

0

Смотрите также

А что там на главной? )))



Комментарии )))