Шаг к пониманию: магнитная трековая память может работать подобно нейронам в мозге человека - «Новости сети»
GeForce RTX 5080 теперь доступна за $20 в месяц — облачный игровой сервис Nvidia GeForce Now обновил инфраструктуру - «Новости сети»
GeForce RTX 5080 теперь доступна за $20 в месяц — облачный игровой сервис Nvidia GeForce Now обновил инфраструктуру - «Новости сети»
«Попали в самую точку!»: музыкальная тема главного меню Heroes of Might & Magic: Olden Era покорила фанатов - «Новости сети»
«Попали в самую точку!»: музыкальная тема главного меню Heroes of Might & Magic: Olden Era покорила фанатов - «Новости сети»
Исследование Google показало, что почти 90 % разработчиков видеоигр применяют в производстве генеративный ИИ - «Новости сети»
Исследование Google показало, что почти 90 % разработчиков видеоигр применяют в производстве генеративный ИИ - «Новости сети»
США почти наверняка проиграют Китаю новую лунную гонку — последствия будут колоссальные - «Новости сети»
США почти наверняка проиграют Китаю новую лунную гонку — последствия будут колоссальные - «Новости сети»
Владелец Arm приобретёт акции Intel на сумму $2 млрд - «Новости сети»
Владелец Arm приобретёт акции Intel на сумму $2 млрд - «Новости сети»
Google Gemini был доступен для россиян всего несколько часов - «Новости сети»
Google Gemini был доступен для россиян всего несколько часов - «Новости сети»
Новые китайские аккумуляторы вдвое обошли ячейки Tesla 4680 по ёмкости — им прямая дорога в небо - «Новости сети»
Новые китайские аккумуляторы вдвое обошли ячейки Tesla 4680 по ёмкости — им прямая дорога в небо - «Новости сети»
Китайская ракета-носитель на метановом топливе, созданная LandSpace, разрушилась при лётном испытании - «Новости сети»
Китайская ракета-носитель на метановом топливе, созданная LandSpace, разрушилась при лётном испытании - «Новости сети»
В преддверии десятого испытательного полёта Starship компания SpaceX раскрыла причины двух прошлых неудач - «Новости сети»
В преддверии десятого испытательного полёта Starship компания SpaceX раскрыла причины двух прошлых неудач - «Новости сети»
Nvidia представила новые ИИ-модели для робототехники - «Новости мира Интернет»
Nvidia представила новые ИИ-модели для робототехники - «Новости мира Интернет»
Новости мира Интернет » Новости » Новости мира Интернет » Шаг к пониманию: магнитная трековая память может работать подобно нейронам в мозге человека - «Новости сети»


Машинное обучение и алгоритмы искусственного интеллекта требуют собственной процессорной базы, а не процессоров общего назначения. Это необходимо для оптимизации работы нейронных сетей при обработке массивов данных. В идеале необходимо создать кремниевый аналог головного мозга человека. Впрочем, кремний не отвечает поставленным целям. Решением может стать электроника на основе взаимодействия магнитных полей.


Группа исследователей из Инженерной школы Кокрелла при Техасском университете в городе Остин провела серию экспериментов по использованию магнитных цепей для энергоэффективной обработки больших данных. Статья о работе опубликована в журнале IOP Nanotechnology (доступ платный). Учёные на практике убедились во взаимном и продуктивном взаимодействии пары магнитных переходов в виде так называемых доменных стен (пограничных переходов намагниченности).


Магнитные взаимодействия между двумя соседствующими логическими элементами, а каждая доменная стена в рамках трековой памяти - это логические 0 или 1, приводят к ослаблению одного из них. Для схем на классической кремниевой логике для этого потребовались бы специальные корректирующие цепи, которые бы донесли реакцию одного элемента до другого. Магнитное взаимодействие, как оказалось, автоматически подавляет сигнал соседнего элемента без каких-либо дополнительных цепей через «пространство и время». Фактически бесплатно.
Шаг к пониманию: магнитная трековая память может работать подобно нейронам в мозге человека - «Новости сети»


Информация сайта - «print-prime.ru»



Подобным образом действуют нейроны в головном мозге человека. Наиболее быстро возбудившийся нейрон подавляет активность других нейронов в слое, где он находится. Нет нужды лишний раз объяснять, что головной мозг после миллионов лет эволюции выполняет свои задачи наиболее эффективным образом. Так и с магнитными доменами. Если вместо сложной кремниевой логики с массой обратных связей создать взаимно влияющие друг на друга массивы доменных стен с более простой реализацией связей, то это существенно снизит энергетические затраты на обработку данных.


В сфере машинного обучения описанный выше эффект называется поперечным торможением и реализуется с помощью сложной логики. Магнитные элементы, как видим, упрощают схемотехнику для реализации тех же алгоритмов. Исследователи из Техасского университета смогли показать это на модели из двух магнитных элементов и вывели математическую модель для массива из 1000 элементов. На следующем этапе они намерены провести эксперименты с множеством магнитных элементов.
Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Машинное обучение и алгоритмы искусственного интеллекта требуют собственной процессорной базы, а не процессоров общего назначения. Это необходимо для оптимизации работы нейронных сетей при обработке массивов данных. В идеале необходимо создать кремниевый аналог головного мозга человека. Впрочем, кремний не отвечает поставленным целям. Решением может стать электроника на основе взаимодействия магнитных полей. Группа исследователей из Инженерной школы Кокрелла при Техасском университете в городе Остин провела серию экспериментов по использованию магнитных цепей для энергоэффективной обработки больших данных. Статья о работе опубликована в журнале IOP Nanotechnology (доступ платный). Учёные на практике убедились во взаимном и продуктивном взаимодействии пары магнитных переходов в виде так называемых доменных стен (пограничных переходов намагниченности). Магнитные взаимодействия между двумя соседствующими логическими элементами, а каждая доменная стена в рамках трековой памяти - это логические 0 или 1, приводят к ослаблению одного из них. Для схем на классической кремниевой логике для этого потребовались бы специальные корректирующие цепи, которые бы донесли реакцию одного элемента до другого. Магнитное взаимодействие, как оказалось, автоматически подавляет сигнал соседнего элемента без каких-либо дополнительных цепей через «пространство и время». Фактически бесплатно. Информация сайта - «print-prime.ru» Подобным образом действуют нейроны в головном мозге человека. Наиболее быстро возбудившийся нейрон подавляет активность других нейронов в слое, где он находится. Нет нужды лишний раз объяснять, что головной мозг после миллионов лет эволюции выполняет свои задачи наиболее эффективным образом. Так и с магнитными доменами. Если вместо сложной кремниевой логики с массой обратных связей создать взаимно влияющие друг на друга массивы доменных стен с более простой реализацией связей, то это существенно снизит энергетические затраты на обработку данных. В сфере машинного обучения описанный выше эффект называется поперечным торможением и реализуется с помощью сложной логики. Магнитные элементы, как видим, упрощают схемотехнику для реализации тех же алгоритмов. Исследователи из Техасского университета смогли показать это на модели из двух магнитных элементов и вывели математическую модель для массива из 1000 элементов. На следующем этапе они намерены провести эксперименты с множеством магнитных элементов.

Смотрите также

А что там на главной? )))



Комментарии )))