Учёные согнули беспроводной канал в терагерцовом диапазоне — слепых зон в 6G-сетях станет меньше - «Новости сети» » Новости мира Интернет
Основные итоги презентации Яндекс Рекламы REKONFA Live - «Новости мира Интернет»
Основные итоги презентации Яндекс Рекламы REKONFA Live - «Новости мира Интернет»
Satechi представила многопортовый магнитный хаб для смартфонов - «Новости мира Интернет»
Satechi представила многопортовый магнитный хаб для смартфонов - «Новости мира Интернет»
Google представила официальный плагин Colab для VS Code - «Новости мира Интернет»
Google представила официальный плагин Colab для VS Code - «Новости мира Интернет»
Сбер обучил нейросеть GigaChat генерации подкастов - «Новости мира Интернет»
Сбер обучил нейросеть GigaChat генерации подкастов - «Новости мира Интернет»
Яндекс запустил платформу, в которой собраны промпты для ИИ - «Новости мира Интернет»
Яндекс запустил платформу, в которой собраны промпты для ИИ - «Новости мира Интернет»
Новые возможности в «Подборе запросов»: детализация регионов, анализ по URL и упрощённые метрики — «Блог для вебмастеров»
Новые возможности в «Подборе запросов»: детализация регионов, анализ по URL и упрощённые метрики — «Блог для вебмастеров»
Представлен первый в мире прозрачный монитор Phantom - «Новости мира Интернет»
Представлен первый в мире прозрачный монитор Phantom - «Новости мира Интернет»
Энтузиаст с Reddit превратил видеокарту в миниатюрный макет железной дороги - «Новости мира Интернет»
Энтузиаст с Reddit превратил видеокарту в миниатюрный макет железной дороги - «Новости мира Интернет»
2ГИС начал отображать стоимость проезда на транспорте - «Новости мира Интернет»
2ГИС начал отображать стоимость проезда на транспорте - «Новости мира Интернет»
Google Play начнет предупреждать о приложениях, чрезмерно расходующих заряд батареи - «Новости мира Интернет»
Google Play начнет предупреждать о приложениях, чрезмерно расходующих заряд батареи - «Новости мира Интернет»
Новости мира Интернет » Новости » Новости мира Интернет » Учёные согнули беспроводной канал в терагерцовом диапазоне — слепых зон в 6G-сетях станет меньше - «Новости сети»

Учёные впервые создали изогнутый канал передачи данных для терагерцевого диапазона, что важно для развёртывания в будущем сетей 6G. Увеличение несущей частоты сигнала, которое произойдёт с внедрением следующего стандарта беспроводных сетей, повысит скорость передачи данных, но ограничит работу приёмников в основном зоной прямой видимости. Передавать данные, огибая препятствия в такой ситуации — важное решение, путь к которому уже найден.



Учёные согнули беспроводной канал в терагерцовом диапазоне — слепых зон в 6G-сетях станет меньше - «Новости сети»


Источник изображения: Brown University



Технологию обхода препятствия по кривой на оптических, инфракрасных и терагерцевых частотах (дальний инфракрасный диапазон) впервые испытали в оптическом диапазоне в 2007 году. Опираясь на эту работу, учёные из Университета Брауна в Провиденсе и Университета Райса в Хьюстоне впервые создали изогнутый канал для терагерцевых частот, показав, что по этому каналу можно передавать данные вне зоны прямой видимости, огибая препятствия между передатчиком и приёмником.


Учёные не искривляли пространство-время, что возможно только рядом с гравитационными объектами типа чёрных дыр или нейтронных звёзд, рядом с которыми электромагнитные волны изгибают свои траектории. Также они не использовали законы квантового мира, делая ставку на туннельные эффекты. Исследователи воспользовались свойством волн интерферировать, создав канал определённой кривизны в заданном направлении.


Также надо заметить, что проделать такой трюк можно далеко не на всём участке работы передатчика. Эффекта «кривизны» можно добиться только в ближней зоне работы передатчика — в так называемом ближнем поле, где электрические и магнитные поля ещё не пришли в состояние баланса энергий. Для Wi-Fi с 10-см антенной это смысла не имеет. Для диапазона 3 ГГц ближняя зона будет ограничена полуметром или около того. Зато для частоты 300 ГГц, например, для той же 10-см антенны ближняя зона распространится на десятки метров и в неё попадёт множество непрозрачных для таких волн препятствий, обогнуть которые было бы заманчиво и просто необходимо.


«То, что мы сделали, это показали, что можно загрузить эти лучи цифровыми данными и посылать сигнал в обход препятствий, — говорят авторы исследования. — Данные могут быть успешно доставлены к цели, даже если есть препятствие, которое частично закрывает вид цели от передатчика».


Проделанная работа далеко не полная, добавляют авторы. Предстоит ещё много работы, например, необходимо изучить, как ведут себя волны на разных частотах всей полосы пропускания, ведь каждые из них будут иметь разную кривизну изгиба. Также величина изгиба зависит от размера передатчика, антенны и многого другого, что предстоит выяснить до начала разговора о каком-либо коммерческом применении разработки.

Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Учёные впервые создали изогнутый канал передачи данных для терагерцевого диапазона, что важно для развёртывания в будущем сетей 6G. Увеличение несущей частоты сигнала, которое произойдёт с внедрением следующего стандарта беспроводных сетей, повысит скорость передачи данных, но ограничит работу приёмников в основном зоной прямой видимости. Передавать данные, огибая препятствия в такой ситуации — важное решение, путь к которому уже найден. Источник изображения: Brown University Технологию обхода препятствия по кривой на оптических, инфракрасных и терагерцевых частотах (дальний инфракрасный диапазон) впервые испытали в оптическом диапазоне в 2007 году. Опираясь на эту работу, учёные из Университета Брауна в Провиденсе и Университета Райса в Хьюстоне впервые создали изогнутый канал для терагерцевых частот, показав, что по этому каналу можно передавать данные вне зоны прямой видимости, огибая препятствия между передатчиком и приёмником. Учёные не искривляли пространство-время, что возможно только рядом с гравитационными объектами типа чёрных дыр или нейтронных звёзд, рядом с которыми электромагнитные волны изгибают свои траектории. Также они не использовали законы квантового мира, делая ставку на туннельные эффекты. Исследователи воспользовались свойством волн интерферировать, создав канал определённой кривизны в заданном направлении. Также надо заметить, что проделать такой трюк можно далеко не на всём участке работы передатчика. Эффекта «кривизны» можно добиться только в ближней зоне работы передатчика — в так называемом ближнем поле, где электрические и магнитные поля ещё не пришли в состояние баланса энергий. Для Wi-Fi с 10-см антенной это смысла не имеет. Для диапазона 3 ГГц ближняя зона будет ограничена полуметром или около того. Зато для частоты 300 ГГц, например, для той же 10-см антенны ближняя зона распространится на десятки метров и в неё попадёт множество непрозрачных для таких волн препятствий, обогнуть которые было бы заманчиво и просто необходимо. «То, что мы сделали, это показали, что можно загрузить эти лучи цифровыми данными и посылать сигнал в обход препятствий, — говорят авторы исследования. — Данные могут быть успешно доставлены к цели, даже если есть препятствие, которое частично закрывает вид цели от передатчика». Проделанная работа далеко не полная, добавляют авторы. Предстоит ещё много работы, например, необходимо изучить, как ведут себя волны на разных частотах всей полосы пропускания, ведь каждые из них будут иметь разную кривизну изгиба. Также величина изгиба зависит от размера передатчика, антенны и многого другого, что предстоит выяснить до начала разговора о каком-либо коммерческом применении разработки.

0

Смотрите также

А что там на главной? )))



Комментарии )))